CASIO.

Trigonometric Functions

Wei-Chi Yang
Radford University, Virginia
U.S.A.

LEVEL

High school when students studying trigonometry functions.

OBJECTIVES

(i) To understand how to use of the amplitude and period of a function such as $f(x)=a * \sin (b x+c)+d$ to find the maximum or minimum of a function.
(ii) To understand the use of trigonometric identities.

Corresponding eActivity

T0101.g1e

OVERVIEW

Trigonometric identities occur frequently and students need to memorize them. In this note, we show some examples why trigonometric identities are important in some cases.

EXPLORATORY ACTIVITIES

[Note]
We shall use small letter x instead of capital X as shown on the calculator throughout the paper.

Remark: We assume readers already know the following facts:
(i) The minimum period for $\mathrm{y}=\sin (a \mathrm{x})$ is $\frac{2 \pi}{a}$, where a is a positive integer.
(ii) The graph of $y=A \sin (a(x-b)+c$ has amplitude A, and its graph is being shifted horizontally to the right b unit(s) and up c unit(s) from that of $y=\sin (x)$ respectively. But $y=A \sin \left(a(x-b)+c\right.$ will still have minimum period $\frac{2 \pi}{a}$.
(iii) If a trigonometric function f has a period L, horizontal or veridical shifting from f will have the same period L.

Trigonometric Functions

Activity 1: Find the minimum period for the function of $f(x)=\sin 2 x+\cos 4 x$.
Solution:
We note that this problem can be solved by manipulating trigonometric identities, which we show here: $\sin 2 x+\cos 4 x=\sin 2 x+\left(1-2 \sin ^{2} 2 x\right)=-2\left(\sin 2 x-\frac{1}{4}\right)^{2}+\frac{9}{8}$, we conclude that the minimum period for this function is $\frac{2 \pi}{2}=\pi$. Next we show how technology can be handy to explore this type of problem if one forgot a trig identify.
A. Tabular Approach (open act1-table 1) We may explore the answer by tabulating the function as follows. We use the degree mode instead of radian mode for the angles. [Press ($\sqrt{\text { SHIFT TMEND }}$ and change the angle from radian to degree], we show the screen shot below:

We set the angle value between $X=0$ and $X=190$ with step size $=10$. Explore the table using © © © () and we shall see a table of values as shown below:

Table 1

X	$F(X)$
0	1
10	1.10806
20	0.81644
30	0.36603
40	0.04512
50	0.04512
60	0.36603
70	0.81644
80	1.10806
90	1
100	0.42402
110	-0.46914
120	-1.136603
130	-1.92450
140	-1.92450
150	-1.36603
160	-0.46914
170	0.42402
180	1
190	1.10806

Trigonometric Functions

We notice that the values of the function repeat every 180 degrees.
B. Graphical Approach (open act1-graph 1) Again we use the degree mode (SHIFT 【सNO). By pressing F1 to trace the graph. With the following V-Window:

We obtain the following screen dumps to reconfirm the period of this function to be 180 degrees or π.

Graphs of $\mathrm{y}=\sin 2 x+\cos 4 x$

Activity 2: For the function above, $f(x)=\sin 2 x+\cos 4 x$, (a) find an x in which $f(x)$ achieves the maximum when x is in [0, $\pi / 2$], (b) find its maximum value. Solution:
(a) Since $f(x)=\sin 2 x+\cos 4 x=-2\left(\sin 2 x-\frac{1}{4}\right)^{2}+\frac{9}{8}$ as discussed in Activity 1, and we observe from the Table 1 above that there are two maximum values near $x=10$ and $x=80$. In addition, since $f(x)=-2\left(\sin 2 x-\frac{1}{4}\right)^{2}+\frac{9}{8}$, it is a quadratic equation in $\sin 2 x$. In other words, $f(x)$ has a maximum when $\sin 2 x=1 / 4$.

Graphical Approach: Open act2. graph1: We observe from the following screen shots that we have two intersections for $\sin 2 x=1 / 4$ (After plotting the graphs, press $F 5$ and ISCT (for intersections)).

Trigonometric Functions

Analytical approach: To solve $\sin (2 x)=\frac{1}{4}$, we have $x=\frac{\sin ^{-1}\left(\frac{1}{4}\right)}{2}$. However, this does not say immediately that x takes two different values. This demonstrates why graphics calculator is beneficial to learners in this case. Next we use $\mathrm{fx}-9860$ to solve $\sin 2 \mathrm{x}=\frac{1}{4}$ or $x=\frac{\sin ^{-1}\left(\frac{1}{4}\right)}{2}$ below.

Algebraic approach: Open act2. solver: We again use the 'degree mode'. Type $\sin (2 x)=\frac{1}{4}$ and choose initial value $X=0$. After solving the equation, the calculator displays the solution, in this case We get X to be about $\mathbf{7 . 2 3 8 8}$ degrees., and also the difference between the left and right sides of the equation when x has the value shown as the solution. If this value is zero, or very close to zero, this will confirm that a good approximation to the solution has been found. We show its screen shot below:

If we use the guessing value for X to be 90 , we get the second desired answer, which is about $X=82.76$ degrees, which we show below:

(b) The maximum value for $\sin 2 x+\cos 4 x=-2\left(\sin 2 x-\frac{1}{4}\right)^{2}+\frac{9}{8}$ is $\frac{9}{8}$.

Remark: Alternatively, if student understands the concept of derivative, we can use the derivative function of f to analyze the local max for f as follows:

Step 1 . We find the derivative for $\sin 2 x+\cos 4 x$ by hand, which gives

$$
f^{\prime}(x)=2 \cos 2 x-4 \sin 4 x
$$

Trigonometric Functions

Step 2. We plot $y=f^{\prime}(x)$ below. Open act2. graph 2: Use the 'degree mode' and use the following V-Window:

The graph is shown below:

Step 3. By tracing the graph F1, we note that there are two places where the derivative changes from positive to negative, one is between $X=0$ and $X=10$ and the other is around $X=80$ and $X=90$. These are the places where f achieves its maximum. We use F5] [G-Solv] command to find the roots of the function. We confirm the desirable answers are about $\mathbf{7 . 2 3 8 8}$ and $\mathbf{8 2 . 7 6}$, which we show below:

EXERCISES

Exercise 1. If $y=\sin 2 x+\cos 2 x$. (a) Find the minimum period for the function. (b) Find the maximum value of y. (c) Use calculator and methods described in this note to verify your answers for (a) and (b).

Exercise 2. If $y=\sin \left(x-\frac{\pi}{6}\right) \cos x$. (a) Find the minimum period for y. (b) Find the minimum value for y. (c) Use calculator and methods described in this note to verify your answers for (a) and (b).

SOLUTIONS

Exercise 1
(a) and (b): Since $\sin 2 x+\cos 2 x=\sqrt{2} \sin \left(2 x+\frac{\pi}{4}\right)$, the minimum period is $\frac{2 \pi}{2}=\pi$. And the maximum value is $\sqrt{2}$.
(c)
A. Tabular Approach (Open ex1-table) We explore the answer by tabulating the function as follows. We use the degree mode instead of radian mode for the angles and set the range for X from 0 to 200 with step $=10$. We confirm the period of this function to be 180 degrees or π.
B. Graphical Approach (open ex1-graph) Again we use the degree mode. (SHIFI MENO) By pressing SHIFT F1 to trace the graph. With the following V-Window:

We obtain the following graphs to reconfirm the period of this function to be 180 degrees or π.

Exercise2.
(a) and (b): By using the identity

$$
\sin x \cdot \cos y=\frac{1}{2}[(\sin (x+y)+\sin (x-y)]
$$

We write $y=\sin \left(x-\frac{\pi}{6}\right) \cos x=\frac{1}{2}\left[\sin \left(2 x-\frac{\pi}{6}\right)-\sin \frac{\pi}{6}\right]=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)-\frac{1}{4}$. Therefore, the minimum period is π and the minimum value for y is $-\frac{1}{2}-\frac{1}{4}=-\frac{3}{4}$.
(c) Open ex2. graph1: (We use radian mode here) By plotting the graphs of $\mathrm{Y} 1=$ $\sin \left(x-\frac{\pi}{6}\right) \cos x$ and $Y 2=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)-\frac{1}{4}$ together, we see that these two are identical. Next by selecting either one of them and press F5 and MIN after plotting, we find the minimum value is indeed $-3 / 4$ or -0.75 as shown in the screen shot below:

Trigonometric Functions

Open ex2. graph2: By plotting $Y 1=\sin 2 x$ and $Y 2=\sin \left(2 x-\frac{\pi}{6}\right)$ together, we conjecture that these two have the same period, which is π. Indeed, this is the case because

$$
\sin \left(2 x-\frac{\pi}{6}\right)=\sin \left(2\left(x-\frac{\pi}{12}\right)\right)
$$

and $y=\sin (2 x)$ and $y=\sin \left(2\left(x-\frac{\pi}{12}\right)\right.$ is only a horizontal shifting away from each other (which will not change their respective periods). We open ex2. graph3, if the period of $y=\sin (2 x)$ is π, then same as $y=\sin \left(2\left(x-\frac{\pi}{12}\right)\right.$.
By plotting $\mathrm{Y} 2=\sin \left(2 x-\frac{\pi}{6}\right)$ and $\mathrm{Y} 3=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)$ together, we see that Y 2 and Y 3 have the same period, this is because the graph of $y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)$ changes only the amplitude from 1 to $1 / 2$. Consequently, the minimum for $y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)$ is $-1 / 2$ and thus the minimum for $y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)-\frac{1}{4}=-\frac{1}{2}-\frac{1}{4}=-\frac{3}{4}$.

Remark: The Exercise 2 above gives us a reason to learn trigonometric identity such as

$$
\sin x \cdot \cos y=\frac{1}{2}[(\sin (x+y)+\sin (x-y)]
$$

One will agree it is easier to find the period and its extremum for $y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{6}\right)-\frac{1}{4}$ than those of $y=\sin \left(x-\frac{\pi}{6}\right) \cos x$.

