

Binomial Probability Distribution

Q#6: The probability that a salesman will make sale on a call is 0.3. If he makes 7 calls on a given day,

- a) find the probability that he makes
 - (i) Exactly three sales
 - (ii) At most three sales
 - (iii) At least three sales
- b) Prepare a probability distribution.

Solution

- a) Finding probabilities.
 - (i) Exactly three sales

(ii) At most three sales Press MENU 7 1 2 And enter the data as shown below

Bin₀	omial CD	P ≝	D	
x	:3			
N	:7			
р	:0.3			0.873964

(iii) At least three sales

Find probability of 2 or less than 2 using the above method then subtract the answer from 1

c) <u>Prepare a probability distribution.</u>

Press MENU 7 4 and select 1 Enter x values from 0 to 7 and press \square

Then enter N = 7 and p = 0.3 and press \blacksquare

Poisson Probability Distribution

Q#7: The average no of cars passing through a certain point is 3 per day. Find the probability that on a given day

- i) Exactly 4 cars will pass through.
- ii) At most 4 cars will pass through.
- iii) More than 4 cars will pass through.

Solution

i) Exactly 4 cars will pass through.

Press \mathbb{R} $\mathbb{7}$ $\mathbb{2}$ to enter Poisson distribution and then select 2. Enter 4 in x value and 3 in mean filed then press \square .

ii) <u>At most 4 cars will pass through.</u>

Press \mathbb{M} 7 \bigcirc 3 to enter Poisson distribution and then select 2. Enter 4 in x value and 3 in mean filed then press \square .

iii) <u>More than 4 cars will pass through.</u> Subtract the answer of part (ii) from 1

Normal Distribution

Q#8: The marks of students in a statistics test conducted by sir Asad at Academy of excellence are normally distributed with mean of 15 marks and standard deviation of 3 marks.

- a) If a student is selected randomly, find the probability that the students secured
 - i) Less than 12 marks
 - ii) More than 12 marks
 - iii) Between 12 and 16 marks
- b) Only 10% of the students failed in the above mentioned test. Find the passing marks.
- c) 12% of the students got scholarship for the whole year by Academy of excellence. Find the lowest marks secured by the scholarship holders.

Solution

a) Normal Distribution calculations

i) <u>Less than 12 marks</u>

Press MEND and select 7 and then 2 to enter inverse normal calculation mode. Type lower limit as -1000000000, upper limit 12, mean 15 and SD 3 and press \square .

ii) More than 12 marks

Press (MENU) and select (7) and then (2) to enter inverse normal calculation mode. Type lower limit as 12, upper limit 1000000000, mean 15 and SD 3 and press (\equiv).

Normal CD	P=
Lower:12	
Upper:1×10 ⁸	
o :3	0.8413447461

Alternate method is to subtract the answer of part (i) from 1

iii) Between 12 and 16 marks

Press MENU and select 7 and then 2 to enter inverse normal calculation mode. Type lower limit as 12, upper limit 16, mean 15 and SD 3 and press \blacksquare .

Normal CD	P=
Lower:12	
Upper:16	
<i>б</i> :3	0.4719034059

b) Inverse Normal calculation

Press MENU and select 7 and then 3 to enter inverse normal calculation mode.

In Area type 0.1 (as 10% = 0.1) and press \square and then 3 in σ field and 15 in μ field.

Inver	se Normal	xInv=
Area	:0.1	
Ø	:3	
μ	:15	11.15534508

c) Inverse Normal calculation (upper extreme)

As the table and calculator both give answer for lower extreme the area will be entered as 100% - 12% = 88%.

In Area type 0.88 (as 88% = 0.88) and press \blacksquare and then 3 in σ field and 15 in μ field.

Compiled by:	Page 3 of 5
Muhammad Asad Ali	
M.Phil. (Finance), M.A (Eco.)	

Invers	se Normal	xInv=
Area	:0.88	
Ø	:3	
μ	:15	18.52496095

Finding Z table values

Q#9: Find Z table values for the following.

 $Z_{0.025}$, $Z_{0.05}$ and $Z_{0.001}$

Solution

Press MENU and select 7 and then 3 for entering inverse normal calculation mode.

In Area type 0.025 and thrice press \blacksquare thrice.

Inverse Normal		xInv=
Area	:0.025	
Ø	:1	
μ	:0	-1.959964028

Note: The values in Z table are rounded to three significant figures whereas the calculator gives more accurate value.

Hypothesis Testing

Q#10: A certain firm claims that the average mass of their product is 150g with standard deviation of 4g. To test their claim a random sample of 64 units yielded a mean of 152 g. Test the claim of the firm at 5% significance level.

Solution

In hypothesis testing, we calculate critical value and then compare it with table value.

To find table value

Press MENU and select 7 and then 3 for entering inverse normal calculation mode.

In Area type 0.025 (as $\frac{\alpha}{2} = 0.025$) and thrice press \square thrice.

Inverse Normal		xInv=
Area	:0.025	
σ	:1	
μ	:0	-1.959964028

Note: The values in Z table are rounded to three significant figures whereas the calculator gives more accurate value.

To find Critical value

Compiled by:
Muhammad Asad Ali
M.Phil. (Finance), M.A (Eco.)

First we need sampling error which is $\frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{64}} = \frac{8}{8} = 1$

Then the p value will be calculated by normal distribution option for this

Press **MENU** and select **7** and then **2** to enter inverse normal calculation mode. Type lower limit as -100000000, upper limit 152, mean 150 and SD 1 and press **=**.

Normal CD	P=	٥
Lower:-1×107		
Upper:152		
o :1		0.977249868

Write the p value somewhere as it will be used in further calculations.

Now we will find the critical value by using the calculated p value in inverse normal menu.

For this, press MENU and select 7 and then 3 for entering inverse normal calculation mode.

In Area type p value i.e. 0.977249868 and, mean as 0, SD as 1 press and then press \square .

Inverse Normal	xInv=
Area :0.9772	
σ :1	
μ :0	2.00000043

Since the critical value is more than the table value, the null hypothesis will be rejected.