Complex Numbers

This resource sheet is designed for use with the Casio fx-CG20. However it can be used with the Casio fx-9860GII or the Casio fx-9750GII although there may be some differences in the key sequences needed and in the screen displays.	
Aim This activity introduces the complex number functions on the calculator and how it might be used by students to investigate some of the properties of complex numbers	
Activity Go to the many and select RUN MENII Then press EXE	Mun-Matrix Statistics eactivity spreadsneet
	Graph Dyna Graph Table Recursion
We need to start by setting up the calculator to operate with	Conic Graphs Equation Program Financial T
to 'Complex Mode'.	Mode↑
Select the 'a+bi ' option by pressing F2	Frac Result :d/c Func Type :Param Draw Type :Connect
Get back to the main screen by pressing EXIT	Derivative :On Angle :Deg
	Complex Mode:a+bi ↓ Real a+bi r∠θ
Now press OPTN F3 to bring up the complex operations menu.	HathDesNorm1 (d/c)a+bi
You will see that there are now options to select.	
 i to input i on the screen Abs finds the modulus of the complex number 	
• Arg finds the argument of the complex number	LIST MAT COMPLEX CALC STAT
Conj finds the complex conjugate	
And scrolling across by pressing \triangleright F6	
• ReP finds the real part of a complex number	
• ImP finds the imaginary part of a complex number	
 >a+bi converts the number to rectangular form 	
	HathDesNorm1 d/c [a+b]
	ReP ImP ▶r∠θÞa+bi ▷

Complex Numbers

■ MathDegNorm] d/c[a+b] (4+31)×(4-31)
$\begin{array}{c} 25 \\ \text{Arg } (5-i) \\ -11.30993247 \\ 1(3+4i) \end{array}$
i Abs Arg Conjg D

Complex Numbers

Exercise Simplify (6 + 4i) - (2 - 3i)1. 2. Simplify (5-2i)(6-i)Find the modulus of 3 – 3i 3. Find the argument of -2 + 3i4. Find the modulus and argument of 2 – 7i 5. You should now feel confident using the complex numbers facility on the calculator. Here are some investigations that will encourage your students to explore some more of the features of complex numbers using the graphics calculator. Investigations **Investigation 1** If $z_1 = 12 + 5i$ and $z_2 = 4 - 3i$ Find: a) | Z₁ | b) $|\mathbf{Z}_2|$ C) | Z₁ || Z₂ | d) $|Z_1 Z_2|$ What do you notice? Does this work for any complex numbers? Can you prove it? **Investigation 2** The complex conjugate of a + bi is a - bi

Multiply 6 + 5i by its complex conjugate. What do you notice about the result?

Try some other complex numbers and do the same. Can you generalise this result?

Prove it!