

Number System

Video by Umair Sajid
Phone number XXXXXXXX
Youtube channel math and math

Complex number

- A complex number is a quantity of the form $x+i y$, where x and y are real numbers, and " i " represents the unit imaginary numbers equal to the positive square root of -1 .

$$
\begin{aligned}
& i=\sqrt{-1} \\
& \Rightarrow i^{2}=-1
\end{aligned}
$$

Press menu

Press 2

your calculator screen look like this

For i symbol press ENG

Addition of complex numbers

- Q

$$
\begin{aligned}
& (7,9)+(3,-5) \\
& =(7+9 i)+(3-5 i) \\
& =7+3+(9-5) i \\
& =10+4 i
\end{aligned}
$$

$(7+9 i)+(3-5 i)^{\text {雨 }}$
$10+4 i$

Subtraction of complex numbers

Q

$$
\begin{aligned}
& (8,-5)+(-7,4) \\
& =(8-5 i)-(-7+4 i) \\
& =8-5 i+7-4 i \\
& =8+7-5 i-4 i \\
& =15-9 i \\
& (8-5 i i)-(-7+4 i)^{4} \\
& 15-9 i
\end{aligned}
$$

O8ロ苞

Multiplication of complex numbers

$$
Q \quad \begin{aligned}
(5, & =4)(-3,-2) \\
& =(5-4 i)(-3-2 i) \\
& =-15-10 i+12 i+8 i^{2} \\
& =-15+2 i-8 \\
& =-23+2 \mathbf{i}
\end{aligned}
$$

Division of complex numbers

if you found \boldsymbol{i} in denominator then just multiply and divide whole sequence by conjugate of denominator as shown below

$$
5
$$

$$
\begin{aligned}
& \text { 11: } \quad \begin{aligned}
\frac{2+6}{2+6 i} & 6+(3,7) \\
& =\frac{2+6 i}{3+7 i} \times \frac{3-7 i}{3-7 i} \\
& =\frac{(2+6 i)(3-7 i)}{(3)^{2}-(7 i)^{2}} \\
& =\frac{6+4 i-42(-1)}{9+49} \\
& =\frac{24}{29}+i \frac{2}{29}
\end{aligned}
\end{aligned}
$$

$\frac{2+6 i^{\sqrt{D}}}{3+7 i}$	i
	$\frac{24}{29}+\frac{2}{29} i$

Multiplicative inverse 'I' (ii) $(\sqrt{2},-\sqrt{5})$

$$
\begin{aligned}
& \text { Multiplicative Inverse }=\frac{1}{(\sqrt{2},-\sqrt{5})}=\frac{1}{\sqrt{2}-\sqrt{5} i} \times \frac{\sqrt{2}+i \sqrt{5}}{\sqrt{2}+i \sqrt{5}}=\frac{\sqrt{2}}{7}+\frac{\sqrt{5}}{7} i \\
& \qquad \begin{array}{rrr}
\frac{1}{\sqrt{2}-\sqrt{5} i} i & i & 4 \\
& \frac{\sqrt{2}}{7}+\frac{\sqrt{5}}{7} i
\end{array}
\end{aligned}
$$

Separate real and imaginary part

16. Separate into real and imaginary parts (write as a simple complex number):

$$
\begin{aligned}
& \text { (ii) } \frac{(-2+3 i)^{2}}{1+i} \\
& \frac{(-2+3 i)^{2}}{1+i}=\frac{4-12 i+9 i^{2}}{1+i} \times \frac{1-i}{1-i} \\
& =\frac{(4-12 i+9(-1))(1-i)}{(1+i)(1-i)} \\
& =\frac{(4-12 i-9)(1-i)}{(1)^{2}-(i)^{2}}=\frac{(-5-12 i)(1-i)}{1-(-1)}=\frac{-5+5 i-12 i+12 i^{2}}{1+1}=\frac{-5-7 i+12(-1)}{2} \\
& =\frac{-17-7 i}{2}=\frac{-17}{2}-\frac{7}{2} i
\end{aligned}
$$

Polar form (r, θ)

Example 4: Express the complex number $1+i \sqrt{3}$ in polar form.

$$
\begin{array}{ll}
\text { Solution: } & \text { Put } r \cos \theta=1 \rightarrow(i) \& r \sin \theta=\sqrt{3} \rightarrow(i i) \\
& \text { Squaring \& adding (i) \& (ii) } \\
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(1)^{2}+(\sqrt{3})^{2} \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3 \\
& r^{2}=4 \\
& r=2
\end{array}
$$

Dividing (ii) by (i)

$$
\begin{aligned}
& \frac{r \sin \theta}{r \cos \theta}=\frac{\sqrt{3}}{1} \\
& \tan \theta=\sqrt{3} \\
& \theta=\operatorname{Tan}^{-1}(\sqrt{3})-\text { Thus } 1+i \sqrt{3}=r(\operatorname{Cos} \theta+i \sin \theta) \\
& =2\left(\operatorname{Cos} 60^{\circ}+i \sin 60\right) \quad \therefore . s
\end{aligned}
$$

Step by step screen view


```
1:rr<0
2:-a+bi
```


Demoiver's theorm

- Statement; $(\operatorname{Cos} \theta+i \sin \theta)^{n}=\operatorname{Cos}(n \theta)+i \sin (n \theta)$

Example 5: Find out real and imaginary parts of each of the following complex numbers.

$$
\begin{equation*}
(\sqrt{3}+i)^{3} \tag{i}
\end{equation*}
$$

Federal 2009

Solution

Let $r \cos \theta=\sqrt{3}, \& r \sin \theta=1$ where

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(\sqrt{3})^{2}+(1)^{2} \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { also } \frac{r \sin \theta}{r \cos \theta}=\frac{1}{\sqrt{3}} \\
& \tan \theta=\frac{1}{\sqrt{3}} \\
& \theta=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& \theta=30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
(\sqrt{3}+1)^{3}=[r(\cos \theta+i \sin \theta)]^{3} & =r^{3}(\cos \theta+i \sin \theta)^{3} \\
=2^{3}(\cos \theta+i \sin \theta)^{3} & =8\left(\cos 3\left(30^{\circ}\right)+i \sin 3\left(30^{\circ}\right)\right. \text { By demoiver's theorem. } \\
(\sqrt{3}+1)^{3} & =8\left[\cos 90^{\circ}+i \sin 90^{\circ}\right] \\
& =8[0+i .1]=0+8 i \\
(\sqrt{3}+1)^{3} & =8 i
\end{aligned}
$$

$(\sqrt{3}+1 i) \times \mathrm{r} \angle \theta$	
	$2 \angle 30$

Exercise problem

5. Simplify by expro
i) $\begin{gathered}5+2 \sqrt{-4} \\ \text { iii) } \frac{2}{\sqrt{5}+\sqrt{-8}}\end{gathered}$
6. Show that $\forall z \in C$
i) $z^{2}+\bar{z}^{2}$ is a real number.

Simplify the following
(i) $\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3}$
(ii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{3}$
iii) $\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{-2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)$
iv) $(a+b i)^{2}$
v) $(a+b i)^{-2}$
vi) $(a+b i)^{3}$
vii) $(a-b i)^{3}$

Common mistake

$$
\begin{array}{|llll|}
\hline\left(\frac{-1}{2}-\frac{\sqrt{3}}{2} i\right)^{3} & & \\
& & \\
\hline
\end{array}
$$

$\tan ^{-1(1)}(-\sqrt{3})$		
		-60

$$
\begin{aligned}
\left(\frac{-1}{2}+\frac{\sqrt{3}}{2} i\right) \cdot{ }^{i}<\theta^{i} & \\
& 1 \angle 120
\end{aligned}
$$

$$
\begin{aligned}
& =[1(\cos 120+i \sin 120)]^{2} \\
& =\cos 360+i \operatorname{son} 360 \\
& =1+0 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& =[1(\cos -120+i \sin -120)]^{2} \\
& =\cos 360-\mathrm{i} \operatorname{son} 360 \\
& =1-0 \\
& =1
\end{aligned}
$$

How to graph numbers on complex plane

$$
\begin{aligned}
& \text { (i) } 2+3 i \\
& \text { Sol. } \quad 2+3 i \text { Compare with } x+i y \\
& \text { Here } x=2, y=-3 \\
& \text { (ii) } 2-3 i \\
& \text { Sol. } \quad 2-3 i \text { Compare with } x+i y \\
& x=2, \quad y=-3 \\
& \text { (iii) }-2-3 i \\
& \text { Sol. } \\
& \text { Compare with } x+i y \\
& x=-2, \quad y=-3 \\
& \text { (iv) }-2+3 i \\
& \text { Sol. } \quad-2+3 i \text { Compare with } x+i y \\
& x=-2, \quad y=3
\end{aligned}
$$

5. Simplify by expressing in the form $a+b i$

$$
\begin{array}{ll}
\text { ii) }\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{3} & \left(\frac{-1}{2}-\frac{\sqrt{3}}{2} i\right)^{3} \\
=\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i\right) & \\
=\left(\left(-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2} i\right)^{2}-2\left(-\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right. & \left(\frac{-1}{2}-\frac{\sqrt{3}}{2} i\right)^{2} \\
=\left(\frac{1}{4}-\frac{3}{4}+\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) & \\
=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) & \left(\frac{-1}{2}-\frac{\sqrt{3} 3}{2} i\right)^{i} \\
=\left(-\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2} i\right)^{2} \\
=\frac{1}{4}-\frac{1}{4} i^{2}=\frac{1}{4}+\frac{\sqrt{3}}{2} i \\
4 & \frac{1+3}{4}=\frac{4}{4}=1
\end{array}
$$

