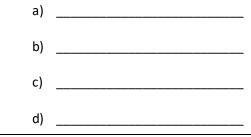


Investigation on families of exponential functions

Objective: In this investigation we will examine the graphs of various families of exponential functions Use of Graphing calculator is required for this activity (Casio cg20 or Casio cg50 is recommended)

- 1. Sketch the following curves using your GDC and answer the questions that follow.
 - a. $y_1 = 2^x$
 - b. $y_2 = 3^x$
 - c. $y_3 = 4^x$
 - d. $y_4 = (0.5)^x$
 - e. $y_5 = (0.25)^x$


Write down the y intercept and equation of horizontal asymptote of each function

What do you observe by changing the value of b in $y = b^{x}$ where b > 0 in each equation?

- 2. Sketch the following curves using your GDC and answer the questions that follow.
 - a. $y_1 = 2^x$
 - b. $y_2 = 2^x + 3$
 - c. $y_3 = 2^x + 5$
 - d. $y_4 = 2^x 3$

Write down the y intercept and equation of horizontal asymptote of each function

Compiled by: Muhammad Asad Ali M.Phil. (Finance), M.A (Eco.) asadali.88@outlook.com Page 1 of 3

What do you observe in the **position** and **shape** by changing the value of k in $y = 2^{x} + k$ where

k is a constant in each equation?

What is the horizontal asymptote of $y = 2^x + k$?

- 3. Sketch the following curves using your GDC and answer the questions that follow.
 - a. $y_1 = 2^x + 3$ b. $y_2 = 2^{x-2} + 3$ c. $y_3 = 2^{x-4} + 3$ d. $y_4 = 2^{x+4} + 3$ e. $y_5 = 2^{x+2} + 3$

Write down the y intercept and equation of horizontal asymptote of each function

a)	
b)	
c)	
d)	
e)	

What do you observe in the **position** and **shape** by changing the value of h in $y = 2^{x-h} + k$

where h is a constant in each equation?

What is the horizontal asymptote of $y = 2^{x-h} + k$?

4. Sketch the following curves using your GDC and answer the questions that follow.

a.
$$y_1 = 2^{-x} + 3$$

b. $y_2 = 2^x + 3$

What do you observe in the **position** and **shape** by changing the sign of x in $y = 2^{x} + k$ in each

equation?

- 5. Sketch the following curves using your GDC and answer the questions that follow.
 - a. $y_1 = 2^x$ b. $y_2 = 2 \times 2^x$
 - c. $y_3 = 4 \times 2^x$
 - d. $y_4 = 6 \times 2^x$

What do you observe in the **steepness of graph** by changing the value of a in $y = a \cdot 2^x$ where a is a

constant in each equation?

Summarize the effect of each change in *a*, *b*, *c* and *d* in $y = a \times b^{x-c} + d$

Page **3** of **3**