Solving Samples of Statistics Problems Using

CASIO FX-CG50 CALCULATOR

Casio Middle East - GAKUHAN

for ideal educational environments.

This booklet aims to help you through the Statistical methods using Casio's FX-CG50. As the FX-CG50 is a powerful and rich tool all in one calculator. It will help you tremendously in performing a large number of operations.

The booklet assumes some basic skills in working with the FX-CG50.

Please note that there may be other methods to attain the same results. The methods presented here are not necessarily the finest or the simplest of the choices available.

fx-CG50

Basic Commands

Consider the data set: $\{15,22,32,31,52,41,11\}$

Entering Data:

Enter the data in Lists on the calculator.
Use your arrow keys to move between lists

Clearing Data:

To clear all data from a list: (use F6 to change options at the bottom of the screen) [F4 F1

To clear an individual entry: Select the value and press DEL.
To edit an individual entry: Select the value and press [F2 Edit.

Sorting Data: (helpful when finding the mode)
Ascending order (lowest to highest) Or Descending order (highest to lowest).
Tools (F1 then Ascending order F1 Or Descending (F2)

- Press F6 button, Then Choose F2 CALC. Select 1-Var Stats F1.
- Use the down arrow \odot to view all the information.

	.mean
	.sum
Σx^{2}	sum of squares
	population standard deviation
	sample standard deviation
	number of data items

$\min X$ \qquad minimum
Q1 \qquad first quartile

Med \qquad median

Q3 \qquad third quartile
maxX \qquad maximum
Mod \qquad mode

Mod:n \qquad number of data mode items

Mod:F \qquad data mode frequency

Mean, Mode, Median

Example: Given the data set $\{13,3,10,9,7,10,12,8,6,3,9,6,11,5,9,13,8,7,7\}$ find the mean, median and mode.

- Go to Statistics application UNENO then enter the data into a list.
(See Basic Commands for entering data.)
- Clear old data and enter the new data into the lists F6 (4) F4 F1
- Press F6 F6 F2 F1 1-Var Stats.
- Arrow up and down the screen to see the statistical information about the data.

國 Rad Norm1] [d/c) [atbil				
	List 1	List 2	List 3	List 4
SUB				
17	8			
18	7			
19	7			
20				
TOOL EDIT DELETE DEL-ALI INSERTI \square				

1-Variable	
Q3 $=10$	\uparrow
$\max \times=13$	
Mod $=7$	
Mod $=9$	
Mod: $\mathrm{n}=2$	
Mod: $\mathrm{F}=3$	

Create a histogram for previous data

- Go back and choose graph then set to select Histogram ExTT ExTT F1 F6 ©
- Draw the graph EXIT F1 1 ExE ExE

Example: From a Frequency Table:

Number	0	1	2	3	4	5	6	7	8	9	10
Frequency	3	4	7	4	10	9	7	3	6	2	4

- Clear old data and enter the new data into the lists MENO (2) EXTit EXTit F6 (a) F4 F1)
- enter the data values in L1. enter their frequencies in L2.
- Draw the histogram. Press F6 F6 F1 F6 © \odot © EXIT F1 ExE to see the graph.

- To see the statistics calculation, press F1 1-Var.

Box and Whisker Plots

Example: given the data set
$\{85,100,97,84,73,89,73,65,50,83,79,92,78,10\}$,

- Clear old data and enter the new data into the lists MENO 2 EXIT EXIT F6 (a) F4 FF1.
- Enter the data into the lists.

- Seeing the graph: Press ⿶ㅐㅍT F1 the TRACE key to see on-screen data about the box-and-whisker plot. The box itself is defined
- by Q1, the median and Q3.
- The spider will jump from the minimum value to Q1, to median, to Q3 and to the maximum value.

Pi Chart

Example: suppose one of the questions asked on a survey was "What type of cars do you have?", and the results from 44 people are shown in this table. Construct a pie chart and a bar chart of these data.

Car	Toyota	Lexus	Mercedes	BMW	Ferrari	Kia	GMC
Frequency	10	7	4	4	3	9	7

- Clear old data and enter the new data into the lists

MENO 2 EXIT EXIT F6 (3) F4 F1

- .
- Enter the data into the lists.

Scatter Plots

A scatter plot is a graph used to determine whether there is a relationship between paired data.
In many real-life situations, scatter plots follow patterns that are approximately linear. If y tends to increase as x increases, then the paired data are said to be a positive correlation. If y tends to decrease as x increases, the paired data are said to be a negative correlation. If the points show no linear pattern, the paired data are said to have relatively no correlation.

To set up a scatter plot:

- Clear old data and enter the new data into the lists (IENO (2) EXIT EXIT F6 (4) F4 F1
- Enter the X data values in L1. Enter the Y data values in $L 2$, being careful that each X data value and its matching Y data value are entered on the same horizontal line.

X	10	20	25	30	40	45	50
Y	120	130	148	155	167	180	200

- Change the functions to see GRAPH by using F6 then

- Activate the scatter plot F1 F6 (F) F1.
- To see the scatter plot, EXIT F1

The linear based regression models on the graphing calculator:

• Linear (LinReg)	$y=a x+b$	The graph of x versus y is linear.
Fits Linear by Transformations:		
• Logarithmic (LnReg)	$y=a+b \ln (x)$	The graph of $\ln (x)$ versus y is linear. Calculates a and b using linear least squares on lists of $\ln (x)$ and y instead of x and y.
• Exponential (ExpReg)	The graph of x versus $\ln (y)$ is linear. Calculates A and B using linear least squares on lists of x and $\ln (y)$ instead of x and y, and then $a=e^{\mathrm{A}}$ and $b=e^{\mathrm{B}}$.	
• Power (PwrReg)	The graph of $\ln (x)$ versus $\ln (y)$ is linear. Calculates A and b using liner least squares on list of $\ln (x)$ and $\ln (y)$ instead of x and y, and then $a=e^{\mathrm{A}}$.	

Other models available on the graphing calculator:

\cdot Quadratic (QuadReg)	$y=a x^{2}+b x+c$	For three points, fits a polynomial to the data. For more than three points, fits a polynomial regression.
\cdot Cubic (CubicReg)	$y=a x^{3}+b x^{2}+c x+d$	For four points, fits a polynomial to the data. For more than four points, fits a polynomial regression.
\cdot Quartic (QuartReg)	$y=a x^{4}+b x^{3}+c x^{2}+d x+e$	For five points, fits a polynomial to the data. For more than five points, fits a polynomial regression.
\cdot Logistic (Logistic)	$y=\frac{c}{\left(1+a e^{-b x}\right)}$	Fits equation to data using iterative least-squares fit.
\cdot Sinusoidal (SinReg)	$y=a \sin (b x+c)+d$	Fits sine wave to data using iterative least-squares fit.

Example: determine a linear regression model equation to represent this data.

- Clear old data and enter the new data into the lists MENO 2 EXTT EXTT F6 (a) F4 F1
- Choose Linear Regression Model from CALC F6 F6 F2 F3 F1 F2
- Create a scatter plot (GRAPH) of the data to graph the regression. EXIT EXIT EXIT EXIT FT F6 © F F1 EXIT F1
- Draw the regression F1 F2 F1 F6

Hours Spent Studying	Math Score
4	390
9	580
10	650
14	730
4	410
7	530
12	600
22	790
1	350
3	400

Exponential Regression Model Example

Time (mins)	0	5	8	11	15	18	22	25	30
Temp (F)	179	168	158	149	141	134	125	123	116

- Clear old data and enter the new data into the lists IIENO 2 EXIT EXIT F6 (4) F4 F1
- Create a scatter plot of the data F6 F6 F1 F6 © (F1 EXIT F1.
- Choose Exponential Regression F1 F6 F3 F2
- Graph the Exponential Regression F6

Logarithmic Regression Model Example

Age of Tree	1	2	3	4	5	6	7	8	9
Height	6	9.5	13	15	16.5	17.5	18.5	19	19.5

- Clear old data and enter the new data into the lists HENO 2 EXXIT EXTI F6 (4) F4 F1
- Create a scatter plot of the data F6 F6 F1 F6 © F F Exit Fi.
- Choose Logarithmic Regression F1 F6 F2
- Graph the Logarithmic Regression F6

Quadratic Regression Model Example

- Clear old data and enter the new data into the lists. [WENO 2 EXTT EXTT F6 (a) F4 F1
- Create a scatter plot of the data F6 F6 F1 F6 © F Fi Exit F1.
- Choose Quadratic Regression F1 F4
- Graph the Quadratic Regression F6

Angle	Distance (feet
10°	115
15°	157
20°	189
24°	220
30°	253
34°	269
40°	284
45°	285
48°	277
50°	269

Sine Regression Model Example

Example: The table below shows the highest daily temperatures (in degrees Fahrenheit) averaged over the month.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1	2	3	4	5	6	7	8	9	10	11	12
Tokyo	32	34	43	57	69	78	82	80	72	60	48	36
Hiroshima	43	47	56	67	75	84	88	87	80	68	58	47
Nagasaki	62	65	72	80	87	92	96	97	91	82	71	63

- Clear old data and enter the new data into the lists(list1, list2, list3, list4). WENU 2 EXIT EXIT F6 © F4 F1
- \quad Create a scatter plot of the data for all cities (list1 with list2, list1 with list3, list1 with list4)

- Choose Sin Regression for each pair of lists F1 F1 F6 F5
- Draw the Sin Regression F6 (do these steps for all pairs of lists list1 with list2, list1 with list3, list1 with list4).

Normal Probability Distribution

The Distribution functions:

1. $p d f=$ Probability Density Function

This function returns the probability of a single value of the random variable x. Use this to graph a normal curve. Using this function returns the y-coordinates of the normal curve.
normal pdf (x, mean, standard deviation)
2. $c d f=$ Cumulative Distribution Function

This function returns the cumulative probability from zero up to some input value of the random variable x. Technically, it returns the percentage of area under a continuous distribution curve from negative infinity to the x. You can, however, set the lower bound.
normal cdf (lower bound, upper bound, mean, standard deviation)
3. inv = Inverse Normal Probability Distribution Function

This function returns the x-value given the probability region to the left of the x-value.
($0 \leq$ area ≤ 1 must be true.) The inverse normal probability distribution function will find the precise value at a given percent based upon the mean and standard deviation.
invNorm (probability, mean, standard deviation)

Example: calculate the normal probability density for a specific parameter value when $x=36, \sigma=2$ and $\mu=35$.

- To draw EXTI $\odot \odot \odot \subset 6$

Example: given a normal distribution of values for which the mean is 70 and the standard deviation is 4.5 . Find:
a) the probability that a value is between 65 and 80 , inclusive.
b) the probability that a value is greater than or equal to 75 .
c) the probability that a value is less than 62 .
d) the $90^{\text {th }}$ percentile for this distribution.

GRAPH CALC TEST INTR DIST $\square \square$

b) The upper boundary in this problem will be positive infinity. Type 10^99 to represent positive infinity

c) The lower boundary in this problem will be negative infinity -1×10^{99}

d) Given a probability region to the left of a value determine the value using invNorm. EXIT EXIT F5 F1 F3 $\odot \odot 0 \bullet 9$ EXE EXE

T-Distribution

Example: calculate Student- t probability density for a specific parameter value when $x=1$ and degrees of freedom = 2 .

Example: calculate Student- t distribution probability for a specific parameter value, we will calculate Student- t distribution probability when lower boundary $=-2$, upper boundary $=3$, and degrees of freedom =18.

Example: Find the area under a T curve with degrees of freedom 10 for $\mathrm{P}(1 \leq \mathrm{X} \leq 2)$.

- Select tcd WENO 2 EXTT EXTT F5 F2 F2.
- Enter the lower and upper bounds, and the degrees of freedom. The lower bound is the lowest number and the upper bound is the highest number: 1,2,10
- Press EXE the answer is .133752549, or about 13.38%.
- To draw EXXT $\odot \odot$ F6

Example: find the T score with a value of 0.25 to the left and df of 10 .

- select Invt MENO 2 EXIT EXIT F5 F2 F3.

- Enter 10 in the Deg of Freedom, df.

Chi-square Distribution

Example: calculate X^{2} probability density for a specific parameter value, we will calculate X^{2} probability density when $x=1$ and degrees of freedom $=3$.

To draw: EXTI $\odot \odot \odot$ F6

Example: calculate X^{2} distribution probability for a specific parameter value, we will calculate X^{2} distribution probability when lower boundary $=0$, upper boundary $=19.023$, and degrees of freedom $=9$.

To draw: EXTI $\odot \odot$ F6

F-distribution probability

F distribution probability calculates the probability of F distribution data falling between two specific values.

Example: calculate F distribution probability for a specific parameter value, we will calculate F distribution probability when lower boundary $=0$, upper boundary $=1.9824, n-d f=19$ and $d-d f=16$.
 To draw: EXIT \odot ©

Binomial probability

Binomial probability calculates a probability at specified value for the discrete binomial distribution with the specified number of trials and probability of success on each trial.

Example: For data $=\{10,11,12,13,14\}$ when Numtrial $=15$ and success probability $=0.6$. calculate binomial probability for one list of data.

- Fill the data IIENO 2 EXXIT EXIT
- Calculate Binomial P.D F5 F5 FiFir

自 Rad [orm]	[d/a ${ }^{\text {ata] }}$
Binomial	P. D
$\left.1{ }^{1} 0.1859\right]$	
20.1267	
30.0633	
40.0219	
5-4.7E-3]	0.1859378448

Example: A six-sided die is rolled twelve times and the number of sixes rolled is counted.
a) What is the probability of rolling exactly two sixes?
b) What is the probability of rolling more than two sixes?

This number of sixes can be modelled as a binomial distribution: $x \sim B\left(12, \frac{1}{6}\right)$.

Solution:

Poisson probability

Poisson probability calculates a probability at specified value for the discrete Poisson distribution with the specified mean.

Example: Customers enter a shop at an average of three per minute. The number of customers entering the shop in a given minute can be modelled by a Poisson distribution: $X \sim P(3)$

- What is the probability of exactly one customer entering the shop in a minute?
- What is the probability of five or fewer customers entering the shop in a minute?

Find $\mathrm{P}(\mathrm{X}=\mathrm{x})$ using Ppd: ©स्NO 2 EXIT EXIT F5 F6 F1 F1
Fill the required data $\mathrm{F} 2 \boldsymbol{2}$ (1)

- Using Pcd WENO 2 EXTT EXXT F5 F6 F1 F2

Example: Calculate Poisson probability for one list of data, we will calculate Poisson probability for data $=\{2,3,4\}$ when $\lambda=6$.

Geometric probability

Geometric probability calculates a probability at specified value, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success.

Example: calculate geometric probability for one list of data, we will calculate geometric probability for data $=\{3$, $4,5\}$ when $p=0.4$.

Tests

The Z Test provides a variety of different standardization-based tests. They make it possible to test whether a sample accurately represents the population when the standard deviation of a population (such as the entire population of a country) is known from previous tests. Z testing is used for market research and public opinion research, that need to be performed repeatedly.

1-Sample Z Test: tests for the unknown population mean when the population standard deviation is known.
2-Sample Z Test: tests the equality of the means of two populations based on independent samples when both population standard deviations are known.

1-Prop Z Test: tests for an unknown proportion of successes.
2-Prop Z Test: tests to compare the proportion of successes from two populations.
The t Test: tests the hypothesis when the population standard deviation is unknown. The hypothesis that is the opposite of the hypothesis being proven is called the null hypothesis, while the hypothesis being proved is called the alternative hypothesis. The t Test is normally applied to test the null hypothesis. Then a determination is made whether the null hypothesis or alternative hypothesis will be adopted.

1-Sample t Test: tests the hypothesis for a single unknown population mean when the population standard deviation is unknown.

2-Sample t Test: compares the population means when the population standard deviations are unknown.
LinearReg t Test: calculates the strength of the linear association of paired data.
The X^{2} test, a number of independent groups are provided, and a hypothesis is tested relative to the probability of samples being included in each group.

The X^{2} GOF test (X^{2} one-way Test): tests whether the observed count of sample data fits a certain distribution. For example, it can be used to determine conformance with normal distribution or binomial distribution.

The X^{2} two-way test: creates a cross-tabulation table that structures mainly two qualitative variables (such as "Yes" and "No"), and evaluates the independence of the variables.

2-Sample F Test: tests the hypothesis for the ratio of sample variances. It could be used, for example, to test the carcinogenic effects of multiple suspected factors such as tobacco use, alcohol, vitamin deficiency, high coffee intake, inactivity, poor living habits, etc.

ANOVA: tests the hypothesis that the population means of the samples are equal when there are multiple samples. It could be used, for example, to test whether or not different combinations of materials have an effect on the quality and life of a final product.

One-Way ANOVA: is used when there is one independent variable and one dependent variable.
Two-Way ANOVA: is used when there are two independent variables and one dependent variable.

1-Sample Z test

Example: Perform a 1-Sample Z Test for one list of data $\mu<\mu 0$ test for the data List $1=\{11.2,10.9,12.5,11.3$, 11.7\}, when $\mu=11.5$ and $\sigma=3$.

- Fill the data with list1 IEENO 2 EXIT EXIT
- 1-sample Z [F3 F1F1
- Fill the values of μ and σ Fi

2-Sample Z test

Example: Perform a 2-Sample Z Test when two lists of data are input, we will perform a $\mu 1<\mu 2$ test for the data List1 $=\{11.2,10.9,12.5,11.3,11.7\}$ and

List2 $=\{0.84,0.9,0.14,-0.75,-0.95\}$, when $\sigma 1=15.5$ and $\sigma 2=13.5$.

	List 1	List 2	List 3	List 4
SUB				
3	12.5	0.14		
4	11.3	-0.75		
5	11.7	-0.95		
6				
T00L	EDIT	DELETE]	I-ALILINS	RT \downarrow

- Clear old data and enter the new data into the lists IENO 2 EXIT EXTIT F6 (4) F4 F4
- Z 2-samples F6 F6 F3 F1 F2

1-Prop Z test

Example: To perform a 1-Prop Z Test for specific expected sample proportion, data value, and sample size Perform the calculation using: $p 0=0.5, x=2048, n=4040$.

- 1-Prop Z test MENO 2 EXIT EXXT F3 F1 F3

- To draw EXIT $\odot \odot$ F6

2-Prop Z test

Example: To perform a $p 1>p 2$ 2-Prop Z Test for expected sample proportions, data values, and sample sizes Perform a $p 1>p 2$ test using: $x 1=225, n 1=300, x 2=230, n 2=300$.

- 2-Prop Z test MENO 2 EXIT EXTI F3 F1 F4 \cdot

- To draw EXIT $\odot \odot$ F6 F1

1-Sample T test

Example: Perform a 1-Sample t Test for one list of data where $\mu \neq \mu 0$, List1 $=\{11.2,10.9,12.5,11.3,11.7\}$, when $\mu 0=11.3$.

- Clear old data and enter the new data into the lists IIENO 2 EXIT EXTI F6 (4) F4 F1

2-Sample T test

Example: Perform a 2-Sample T Test when two lists of data are input for $\mu 1 \neq \mu \mathbf{2}$, List $1=\{55,54,51,55,53,53$, $54,53\}$ and List2 $=\{55.5,52.3,51.8,57.2,56.5\}$ when pooling is not in effect.

- Clear old data and enter the new data into the lists (IENO 2 EXTI EXTI F6 (4) F4 F1
- 2-sample T F6 F6 F3 F2 F2 Ex
- For graphing EXIT $\odot \odot \odot \odot \odot \odot \odot \odot \odot \nabla 6$

LinearReg t Test

Example: Perform a LinearReg t Test when two lists of data are input for this example, we will perform a LinearReg t Test for x-axis data $\{0.5,1.2,2.4,4,5.2\}$ and y-axis data $\{-2.1,0.3,1.5,5,2.4\}$.

- Clear old data and enter the new data into the lists [IENO 2 EXIT EXIT F6 (a) F4 F1
- T test LinearReg F6 F6 F3 F2 F3 [致

Chi-Square Test

χ^{2} Test sets up several independent groups and tests hypotheses related to the proportion of the sample included in each group. The χ^{2} Test is applied to dichotomous variables (variable with two possible values, such as yes/no).

Example: To perform a X^{2} Test on a specific matrix cell, we will perform a X^{2} Test for Mat A, which contains the following data. $\begin{array}{cc}1 & 4 \\ 5 & 10\end{array}$

- X^{2} Test -2 way MENO 2 EXIT EXIT F3 F3 F2
- Observed matrix to fill the data F2 F3 2 EXE 2 EXE EXE 1 EXE 4 EXE 5 EXE 100 EXE
- Calculate the value EXIT EXIT © F1 Draw the graph EXIT F6

2-Sample F Test

Example: Perform a 2-Sample F Test when two lists of data are input for this example, we will perform a 2Sample F Test for the data List1 $=\{0.5,1.2,2.4,4,5.2\}$ and List2 $=\{-2.1,0.3,1.5,5,2.4\}$.

- Clear old data and enter the new data into the lists IIENO 2 EXIT EXIT F6 (4) F4 F1 F6 F6
- Sample FTest F3 F4 F1 (A) F1
- Draw the graph EXXT F6 F2

ANOVA tests

Example: Perform one-way ANOVA (analysis of variance) when three lists of data are input for this example, we will perform analysis of variance for the data List1 $=\{1,1,2,2\}$ List2 $=\{90,95,84,86\}$.

- Clear old data and enter the new data into the lists IIENO (2) EXIT EXIT F6 (4) F4 F0
- Sample FTest F6 F6 F3 F6 Fir

Example：Perform two－way ANOVA（analysis of variance）when three lists of data are input For this example，we will perform analysis of variance for the data List1 $=\{1,1,1,1,2,2,2,2\}$ ，List2 $=\{1,1,2,2,1,1,2,2$,$\} and List3 =$ $\{113,116,139,132,133,131,126,122\}$ ．
－Clear old data and enter the new data into the lists WEND 2 EXIT EXIT F6 © F4 F1 F6 F6
－Sample F Test F3 F5 F2 $\odot \odot \odot$ F1 3 EXE EXE
－Draw the graph EXIT（）（大）（大）（大6

GRAPH CALC TEST INTR DIST $\square \square$

Confidant Intervals

－1－Sample Z Interval calculates the confidence interval when the population standard deviation is known．
－2－Sample Z Interval calculates the confidence interval when the population standard deviations of two samples are known．
－1－Prop Z Interval calculates the confidence interval when the proportion is not known．
－2－Prop Z Interval calculates the confidence interval when the proportions of two samples are not known．
－1－Sample t Interval calculates the confidence interval for an unknown population mean when the population standard deviation is unknown．
－2－Sample \boldsymbol{t} Interval calculates the confidence interval for the difference between two population means when both population standard deviations are unknown．

Example: To calculate the 1-Sample Z Interval for one list of data, we will obtain the Z Interval for the data $\{11$, $10,12,11,11,15\}$, when C-Level $=0.95(95 \%$ confidence level) and $\sigma=3$.

- Clear old data and enter the new data into the lists MENO 2 EXIT EXIT F6 © F4 F1 F6 F6
- Z-INTR 1-sample to calculate the interval F4 F1 F1 F1 $\odot 0-955$ EXE 0 EXE EXE

Example: To calculate the 2-Sample Z Interval when two lists of data are input for this example, we will obtain the 2-Sample Z Interval for the data $1=\{55,54,51,55,53,53,54,53\}$ and data $2=\{55.5,52.3,51.8,57.2,56.5\}$ when C-Level $=0.95$ (95% confidence level), $\sigma 1=15.5$, and $\sigma 2=13.5$.

- Clear old data and enter the new data into the lists MENO 2 EXIT EXIT F6 © F4 F1 F6 F6
- 2-sample Z-INTR to calculate the interval F4 F1 F2 $\odot \odot 105-5$ EXE $10.3-5$ EXE EXE

Example: To calculate the 1-Prop Z Interval using parameter value specification for this example, we will obtain the 1-Prop Z Interval when C-Level $=0.99, x=55$, and $n=100$.

- Fill the data for 1-Prop Z-INTR to calculate the interval

Example: To calculate the 2-Prop Z Interval using parameter value specification for this example, we will obtain the 2-Prop Z Interval when C-Level $=0.95, x 1=49, n 1=61, x 2=38$ and $n 2=62$.

- Fill the data for 1-Prop Z-INTR to calculate the interval

2-Prop Z	Interval
C-Level	:0.95
x 1	:49
n1	: 61
x 2	:38
n2	:62
Save Res:None	

[Ra] [0rm1] [docatal
2-Prop ZInterval
Lower $=0.03336798$
Upper $=0.34738294$
$\hat{\mathrm{p}} 1=0.80327868$
$\hat{\mathrm{p} 2}=0.61290322$
$\mathrm{n} 1{ }^{\text {a }}$ =61
$\mathrm{n} 2=62$

Example: To calculate the 1 -Sample t Interval for one list of data, we will obtain the $1-$ Sample t Interval for data $=$ $\{11,10,12,13,17\}$ when C-Level $=0.95$.

Example: To calculate the 2-Sample t Interval when two lists of data are input, we will obtain the 2-Sample t Interval for data $1=\{55,54,51,55,53,53,54,53\}$ and data $2=\{55.5,52.3,51.8,57.2,56.5\}$ without pooling when C-Level $=0.95$.

- Clear old data and enter the new data into the lists MENO 2 EXTIT EXTIT F6 (4) F4 F1
- To calculate the interval (INTR) F6 F6 F4 F2 F2 F1

